首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24409篇
  免费   3362篇
  国内免费   2584篇
电工技术   1918篇
技术理论   1篇
综合类   3588篇
化学工业   1960篇
金属工艺   1878篇
机械仪表   1786篇
建筑科学   678篇
矿业工程   340篇
能源动力   287篇
轻工业   712篇
水利工程   196篇
石油天然气   341篇
武器工业   351篇
无线电   2987篇
一般工业技术   4287篇
冶金工业   495篇
原子能技术   169篇
自动化技术   8381篇
  2024年   43篇
  2023年   329篇
  2022年   530篇
  2021年   724篇
  2020年   751篇
  2019年   814篇
  2018年   736篇
  2017年   998篇
  2016年   1019篇
  2015年   1205篇
  2014年   1565篇
  2013年   1854篇
  2012年   1794篇
  2011年   1852篇
  2010年   1518篇
  2009年   1678篇
  2008年   1518篇
  2007年   1741篇
  2006年   1458篇
  2005年   1291篇
  2004年   1086篇
  2003年   864篇
  2002年   704篇
  2001年   662篇
  2000年   565篇
  1999年   470篇
  1998年   390篇
  1997年   335篇
  1996年   307篇
  1995年   309篇
  1994年   255篇
  1993年   218篇
  1992年   170篇
  1991年   133篇
  1990年   116篇
  1989年   84篇
  1988年   66篇
  1987年   41篇
  1986年   25篇
  1985年   22篇
  1984年   19篇
  1983年   21篇
  1982年   13篇
  1981年   12篇
  1980年   6篇
  1979年   6篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
Multilayer graphene (MLG) shows an attractive prospect for the demanding engineering applications. This paper reports the mechanical and tribological properties of MLG reinforced Ni3Al matrix composites (NMCs) under dry sliding at varying sliding speed. The hardness and elastic modulus of the NMCs are significantly influenced with MLG content. It is found that the hardness and elastic modulus of the NMCs are found to be increased by increasing MLG content up to 1.0 wt.%, while decreased when MLG content is above 1.0 wt.%. Tribological experiments suggest that MLG can dramatically improve the wear resistance and decrease the friction coefficient of the NMCs. Such marked improvement of wear resistance is attributed to the reinforcing mechanisms of MLG, such as crack deflection and pull-out, and reduction of friction coefficient is related to the formation of a tribofilm on the sliding contact surface.  相似文献   
72.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   
73.
This paper presents the Kriging model approach for stochastic free vibration analysis of composite shallow doubly curved shells. The finite element formulation is carried out considering rotary inertia and transverse shear deformation based on Mindlin’s theory. The stochastic natural frequencies are expressed in terms of Kriging surrogate models. The influence of random variation of different input parameters on the output natural frequencies is addressed. The sampling size and computational cost is reduced by employing the present method compared to direct Monte Carlo simulation. The convergence studies and error analysis are carried out to ensure the accuracy of present approach. The stochastic mode shapes and frequency response function are also depicted for a typical laminate configuration. Statistical analysis is presented to illustrate the results using Kriging model and its performance.  相似文献   
74.
In recent years, both industrial and academic world are focussing their attention toward the development of sustainable composites, reinforced with natural fibres. In particular, among the natural fibres (i.e. animal, vegetable or mineral) that can be used as reinforcement, the basalt ones represent the most interesting for their properties. The aim of this review is to illustrate the results of research on this topical subject. In the introduction, mechanical, thermal and chemical properties of basalt fibre have been reviewed. Moreover, its main manufacturing technologies have been described. Then, the effect of using this mineral fibre as reinforcement of different matrices as polymer (both thermoplastic and thermoset), metal and concrete has been presented. Furthermore, an overview on the application of this fibre in biodegradable matrix composites and in hybrid composites has been provided. Finally, the studies on the industrial applications of basalt fibre reinforced composites have been reviewed.  相似文献   
75.
Graphene nanoplatelet (GNP) was incorporated into poly(vinylidene fluoride) (PVDF) and PVDF/poly(methyl methacrylate) (PMMA) blend to achieve binary and ternary nanocomposites. GNP was more randomly dispersed in binary composites compared with ternary composites. GNP exhibited higher nucleation efficiency for PVDF crystallization in ternary composites than in binary composites. GNP addition induced PVDF crystals with higher stability; however, PMMA imparted opposite effect. The binary composite exhibited lower thermal expansion value than PVDF; the value further declined (up to 28.5% drop) in the ternary composites. The storage modulus of binary and ternary composites increased to 23.1% and 53.9% (at 25 °C), respectively, compared with PVDF. Electrical percolation threshold between 1 phr and 2 phr GNP loading was identified for the two composite systems; the ternary composites exhibited lower electrical resistivity at identical GNP loadings. Rheological data confirmed that the formation of GNP (pseudo)network structure was assisted in the ternary system.  相似文献   
76.
We propose a stochastic multiscale method to quantify the correlated key-input parameters influencing the mechanical properties of polymer nanocomposites (PNCs). The variations of parameters at nano-, micro-, meso- and macro-scales are connected by a hierarchical multiscale approach. The first-order and total-effect sensitivity indices are determined first. The input parameters include the single-walled carbon nanotube (SWNT) length, the SWNT waviness, the agglomeration and volume fraction of SWNTs. Stochastic methods consistently predict that the key parameters for the Young’s modulus of the composite are the volume fraction followed by the averaged longitudinal modulus of equivalent fiber (EF), the SWNT length, and the averaged transverse modulus of the EF, respectively. The averaged longitudinal modulus of the EF is estimated to be the most important parameter with respect to the Poisson’s ratio followed by the volume fraction, the SWNT length, and the averaged transverse modulus of the EF, respectively. On the other hand, the agglomeration parameters have insignificant effect on both Young’s modulus and Poisson’s ratio compared to other parameters. The sensitivity analysis (SA) also reveals the correlation between the input parameters and its effect on the mechanical properties.  相似文献   
77.
A methodology is presented to directly measure the damage properties and strain softening response of laminated composites by conducting over-height compact tension (OCT) and compact compression (CC) tests. Through the use of digital image correlation (DIC) technique, and analysis of the measured surface displacement/strain data, the strain-softening response of composites is constructed. This method leads to a direct determination of the Mode I translaminar fracture properties with the assumption that the shear stress is negligible around the damage zone and the crack growth occurs in the symmetric opening mode. Using this methodology, and by correlating the observed failure mechanisms with the strain-softening curves, the interaction of failure mechanisms leading to the final failure and also the distinction between the tensile and compressive failure mechanisms can be studied. The effectiveness of the method in accurate identification of the damage parameters is demonstrated through sectioning and deplying techniques. As a consistency check and further verification of the method, the obtained strain-softening curves are fed into a numerical damage mechanics model and successfully used to simulate the detailed response of the very same OCT and CC specimens from which the strain-softening curves were extracted.  相似文献   
78.
Attribute reduction is viewed as an important preprocessing step for pattern recognition and data mining. Most of researches are focused on attribute reduction by using rough sets. Recently, Tsang et al. discussed attribute reduction with covering rough sets in the paper (Tsang et al., 2008), where an approach based on discernibility matrix was presented to compute all attribute reducts. In this paper, we provide a new method for constructing simpler discernibility matrix with covering based rough sets, and improve some characterizations of attribute reduction provided by Tsang et al. It is proved that the improved discernibility matrix is equivalent to the old one, but the computational complexity of discernibility matrix is relatively reduced. Then we further study attribute reduction in decision tables based on a different strategy of identifying objects. Finally, the proposed reduction method is compared with some existing feature selection methods by numerical experiments and the experimental results show that the proposed reduction method is efficient and effective.  相似文献   
79.
Microstructure evolution of vapour-grown carbon nanofibre (VGCF)-reinforced aluminium matrix composites during fabrication and microstructure–property relationships of these materials were studied. Composites were fabricated using powder metallurgy, i.e. by mixing VGCFs and aluminium powder via ball-milling followed by sintering or hot extrusion. The mixing condition was selected to achieve small powder particle size and homogeneously dispersed VGCFs. Aluminium grains and VGCFs were elongated along the longitudinal direction of aluminium particles in the mixed powder. Detailed observation of the aluminium grains in the composites found grain size and morphology dominated by recrystallization. Apparently, grain growth was inhibited by VGCFs. Theoretical models considering strength increment due to grain refinement resulting from VGCF addition, load bearing of VGCFs, thermal mismatch of VGCFs and aluminium and Orowan effect were developed. Theoretical values coincided well with hardness, yield strength, and ultimate tensile strength of the composites, and thus the models could precisely explain the microstructure–property relationships.  相似文献   
80.
Because of the inductive impedance caused by steel meshes in traditional reinforced ballastless track slabs, the electrical properties, primarily the rail resistance and inductance, of jointless track circuits are affected by electromagnetic induction between the slabs and the electric current in the rail. This problem results in poor transmission performance throughout the track circuit. Insulating sleeves or cards between the steel meshes have been used to improve the insulation capability of steel meshes in slabs; however, they reduce the bonding performance between the steel bars and concrete. Because of the good insulation properties of fiber-reinforced polymer composite bars (FRPs) and steel-fiber reinforced polymer composite bars (SFCBs), these composite materials have shown potential to overcome this insulation problem. However, the structural performance of the ballastless track slabs reinforced by basalt fiber reinforced polymer composite bars (BFRPs) and SFCBs, which play a key role in the structure and transportation safety, needs to be investigated. In this paper, six ballastless track slabs reinforced with BFRPs, SFCBs, and steel bars were constructed and tested. The following results were obtained. (1) Shear failures were observed for all slabs, both the BFRP and SFCB slabs meet the load level requirements, and SFCBs reinforcements have higher strength utilization compared with BFRPs reinforcements. (2) The bond-quality of SFCBs and BFRPs reinforcements proved slightly poorer than that of the steel bars. Because of the good corrosion resistance of the FRP, the maximum crack width limits can be slightly larger than that of the RC slabs. (3) Bischoff’s equation was initially used to calculate the deflection of partially prestressed concrete slabs under service loads. The results demonstrated a good agreement between the theoretical and experimental analysis. (4) Considering the tensile stiffness, the modified ACI equation was used to calculate the slabs’ crack width and the theoretical and experimental results showed a good agreement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号